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The variational cluster approach �VCA� based on the self-energy functional theory is applied to the two-
dimensional symmetric periodic Anderson model at half filling. We calculate a variety of physical quantities
including the staggered moments and single-particle spectra at zero temperature to show that the symmetry
breaking due to antiferromagnetic ordering occurs in the strong coupling region, whereas in the weak-coupling
region, the Kondo insulating state without symmetry breaking is realized. The critical interaction strength is
estimated. We thus demonstrate that the phase transition due to competition between antiferromagnetism and
Kondo screening in the model can be described quantitatively by VCA.
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I. INTRODUCTION

The two-dimensional �2D� heavy-fermion system has at-
tracted much attention as a subsequent study of high-
temperature superconductors and has recently been one of
the central issues in the study of strongly correlated electron
systems. For example, the heavy-fermion material YbRh2Si2
shows a rapid change in the Hall coefficient as a function of
magnetic field at zero temperature, which is accompanied by
the antiferromagnetic �AF� to paramagnetic �PM� phase
transition.1 Also, heavy-fermion-like behavior is observed in
the system of 3He bilayers adsorbed on graphite.2 Generally
speaking, competition between the magnetic ordering of lo-
calized spins through the Ruderman-Kittel-Kasuya-Yoshida
�RKKY� �Ref. 3� interaction and the nonmagnetic states in-
duced by the Kondo screening4 brings about the observed
anomalous behaviors in heavy-fermion materials. From the
theoretical point of view, the periodic Anderson model
�PAM� �Ref. 5� is one of the simplified models for heavy-
fermion systems, which is believed to describe the competi-
tion between magnetic ordering and Kondo singlet formation
observed in heavy-fermion materials.

In 2D quantum systems, the symmetry-broken magneti-
cally ordered state can be realized in the ground state at zero
temperature, and therefore, one needs a method of calcula-
tion appropriate for infinite-size systems in the thermody-
namic limit. In this paper, we therefore use the variational
cluster approach �VCA� �Refs. 6 and 7� based on the self-
energy functional theory �SFT� �Ref. 8� to consider the 2D
periodic Anderson model at half filling. Although the self-
energies of the small clusters are used in the VCA calcula-
tions and thus the long-range spin fluctuations beyond the
cluster size are not taken into account, the quantum fluctua-
tions within the cluster are treated exactly in this approach.
We may, therefore, expect that this approach should be ap-
plicable to describe the possible symmetry breaking of the
model in the thermodynamic limit beyond the simple mean-
field theory.

We will show that, by means of VCA, the symmetry
breaking due to the AF ordering of localized spins occurs in
the strong coupling region, whereas in the weak-coupling

region, the Kondo insulator without symmetry breaking is
realized. The critical interaction strength will thereby be de-
termined. We will also calculate the staggered magnetic mo-
ment as a function of the interaction strength and show that
the phase transition is of the second order. We will further-
more calculate the single-particle spectra and densities of
states �DOSs� to discuss the effects of electron correlation on
the quasiparticle band structure. We will, thus, show how the
system changes from the AF insulator, Kondo insulator, to
the band insulator, with decreasing the interaction strength.

This paper is organized as follows. In Sec. II, we present
our model and method of calculation. In Sec. III, we present
our results of calculations for the stability of the AF ordering,
staggered magnetic moment, single-particle spectra, and
DOS by VCA. We summarize our work in Sec. IV.

II. MODEL AND METHOD

A. Model

We consider the PAM defined on the 2D square lattice.
The Hamiltonian is given by

H = − t�
�ij�

�ci�
† cj� + H.c.� − V�

i�

�ci�
† f i� + H.c.�

+ U�
i

ni↑
f ni↓

f + � f�
i�

ni�
f , �1�

where ci� �f i�� is the annihilation operator of an electron at
site i with spin � in the conduction-electron c �f-electron f�
orbital, and ni�

f = f i�
† f i� is the electron number operator in the

f orbital. t is the hopping parameter between the nearest-
neighbor c orbitals, V is the on-site hybridization parameter
between the c and f orbitals, U is the on-site repulsion on the
f orbital, and � f is the energy level of the f orbital with
respect to that of the c orbital set to be the origin of energy.
In the following calculations, we consider the symmetric
case, i.e., the case with � f =−U /2. We also focus on the elec-
tron densities at half filling, i.e., 2Ns electrons in the Ns unit
cells, where the unit cell contains one c and one f orbital. We
hereafter set t=V=1 as the unit of energy, and we change the
value of the interaction strength U.
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B. Variational cluster approach

Let us first briefly review the formulation of SFT �Ref. 8�
and present the method of calculation of the magnetic order-
ing by VCA �Refs. 6 and 7� in order to make our paper
self-contained. We consider the system of the Hamiltonian
H=H0�t�+H1�U�, where t and U denote the one-particle and
interaction parameters of H, respectively. In general, the
grand potential is given from the stationary point of the self-
energy functional

���� = F��� + Tr ln�− �G0
−1 − ��−1� , �2�

where F��� and G0 are the Legendre transform of the
Luttinger-Ward potential ��G� and the bare Green’s func-
tion, respectively. The rigorous variational principle
����� /��=0 gives the Dyson equation G−1=G0

−1−�, where
G is the physical Green’s function.

In the above expression �Eq. �2��, F��� is a universal
functional of the self-energy; i.e., F��� remains unchanged
for an arbitrary reference system of the Hamiltonian H�
=H0�t��+H1�U� that has the same interaction part as the
original system has, but with modified one-particle param-
eters. We here introduce the restriction of the space of the
exact self-energies of the original system to the set of exact
self-energies of the reference system. Because of this restric-
tion, the following procedure becomes approximate, but it
enables us to obtain the grand potential of the original sys-
tem from the stationary point of the ��t�� functional

����t��� = �� + Tr ln�− �G0
−1 − ��t���−1	

− Tr ln�− �G0�
−1 − ��t���−1	 , �3�

where ��, ��t��, and G0� are the grand potential, exact self-
energy, and bare Green’s function of the reference system,
respectively. The condition �����t��� /�t�=0 gives an appro-
priate reference system that describes the original system ap-
proximately.

In VCA, we first divide the original infinite lattice into the
finite-size identical clusters. By switching off the hopping
parameters between the identical clusters, we construct the
reference system as an assembly of the exactly solvable
finite-site clusters. One of the major advantages of VCA is its
ability to describe the symmetry-breaking long-range order
by introducing suitably chosen fictitious symmetry-breaking
Weiss fields in the set of variational parameters t�. In order to
discuss the competition between the AF ordering and Kondo
screening in the parameter space, we here introduce stag-
gered magnetic field h� on the f orbitals in the cluster Hamil-
tonian as a variational parameter. We thus obtain the Hamil-
tonian of the reference system, H�, which is given by

H� = �
R

HR� , �4�

HR� = − t�
�ij�

�ci�
† cj� + H.c.� − V�

i�

�ci�
† f i� + H.c.� + U�

i

ni↑
f ni↓

f

+ � f�
i�

ni�
f + h��

i

eiQ·ri�ni↑
f − ni↓

f � , �5�

where R is the label of the clusters, i and j are the labels of

the sites within the cluster R, and Q= �� ,��.
In the present study, we use a six-site �2	3� cluster to

search for the stationary point of ����h��� with a condition
�����h��� /�h�=0 as discussed above. We should note that
the shape of the cluster introduced as a reference system is
not commensurate with the AF ordering. We therefore treat a
12-site �2	6� cluster as a supercell by combining the two
six-site clusters. We treat the intercluster hopping elements,
as well as the hopping elements between the supercells,
“perturbatively”;9 i.e., we use the self-energies of the six-site
clusters to calculate the Green’s function of the original in-
finite system, as well as that of the reference systems �an
assembly of the identical 12-site clusters� via the Dyson
equation and obtain the values of ����h��� for various val-
ues of h� by using the Eq. �3�.

III. RESULTS OF CALCULATIONS

A. Stability of the antiferromagnetic ordering

It is known that the AF ordering of the f electrons is
realized in the ground state of the strong coupling region of
PAM �as well as Kondo-lattice model� in 2D.10–12 We dem-
onstrate this in Fig. 1, where the calculated values of
����h���−����0�� per site for several values of U near the
critical point are shown. We find the following: �i� The value
has a minimum at a finite value of h� for U
Ucr, which
indicates that the symmetry-broken AF ordering is stabilized
for U
Ucr. �ii� The value of h� at which ����h���
−����0�� has a minimum approaches 0 with decreasing U to
U→Ucr. �iii� The critical value of U is determined as Ucr
=2.7. This value is comparable to �but is slightly smaller
than� the result of the quantum Monte Carlo calculation,10

where the value Ucr
2.95 is reported. The reason for the
overestimation of the AF stability in VCA may be explained
as follows: In the VCA calculation, we use the cluster repre-
sentable self-energies, i.e., exact self-energies of small clus-
ters, as the trial self-energies. Thus, the long wavelength spin
fluctuations beyond the cluster size are not taken into
account.7 Also, we use the staggered magnetic field on the f

Ω
Σ

−
Ω

Σ

Ω
Σ

−
Ω

Σ

FIG. 1. Calculated results for ����h���−����0�� �per site�. The
right panel shows an enlargement of the small h� region of the left
panel. We show the results for several values of U near the phase
transition. Dotted horizontal line is a guide for eyes.
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orbitals h� as a single variational parameter, which sup-
presses the quantum spin fluctuations. This may also be re-
sponsible for the overestimation. �iv� For U�Ucr, we find
the minimum at h�=0, which indicates that there is no long-
range AF ordering in the system.

B. Staggered magnetic moment

In Fig. 2, we show calculated results for the staggered
magnetic moment of the f orbitals �Mf� and c orbitals �mc�
per site at zero temperature, which are defined by

�Mf� = − lim
hext

f →0

��

�hext
f , �6a�

�mc� = − lim
hext

c →0

��

�hext
c , �6b�

where � is the grand potential of the system per site and hext
f

�hext
c � is the external staggered magnetic field acting on the f

�c� orbitals. We find the following: �i� The staggered mag-
netic moment of the f electrons decreases continuously to 0
when we decrease the value of U from the strong coupling
region to Ucr. Thus, the phase transition is of the second
order. �ii� The staggered moment of the c electrons also
shows the similar behavior but the polarization is of the op-
posite sign. �iii� The obtained staggered moments may be
overestimated as in the case of the Hubbard model in 2D,7

which is due again to the overestimation of the stability of
the AF ordered state in VCA as discussed above.

We also point out that the calculated staggered moments
�Mf� and �mc� are found to show a power-law behavior in the
vicinity of the transition point as ��U−Ucr�� with the expo-
nent �
0.5, which is consistent with the mean-field value
�=0.5 within the numerical accuracy. Thus, the VCA calcu-
lation, which neglects the long-range spin fluctuations be-
yond the cluster size, gives the results equivalent to those of
the simple mean-field approximation at least in the descrip-
tion of the critical behaviors such as the critical exponent.

C. Single-particle spectra and densities of states

We then calculate the single-particle spectra13 defined by
the imaginary part of the “Fourier transform” of the opti-

mized physical Green’s function.7 We also calculate the DOS
from the k-space integration of the imaginary part of the
optimized physical Green’s function. The results are shown
in Fig. 3, where we use the AF Brillouin zone when the
system is in the symmetry-broken AF state �see Figs. 3�a�
and 3�b��, but for nonmagnetic states, we use the standard
first Brillouin zone �see Fig. 3�c��.

In Fig. 3�a�, i.e., for U=10, we can first identify the “up-
per and lower Hubbard bands” for the f electrons, which are
almost dispersionless and are separated by an energy �U.
We can also identify the lower-energy dispersive bands in
Fig. 3�a�. Here, we use the spin-density-wave �SDW� disper-
sion to fit the spectra. The SDW dispersion can be obtained
by diagonalizing the SDW Hamiltonian HSDW defined by

HSDW = �
k�

�cAk�
† cBk�

† fAk�
† fBk�

† �

	�
�mc �k − Ṽ 0

�k − �mc 0 − Ṽ

− Ṽ 0 Ẽf − �Mf 0

0 − Ṽ 0 Ẽf + �Mf

�cAk�

cBk�

fAk�

fBk�
 ,

�7�

where A and B are the sublattice indices, Ṽ and Ẽf are the
effective hybridization parameter and effective energy level
of the f orbital, respectively, Mf �mc� is the staggered mag-
netic moment of the f �c� orbitals, and �k=−2t�cos kx
+cos ky�. We assume Mf and mc to have the values obtained

in Eqs. �6a� and �6b� and we fix Ẽf to be 0. We determine the

value of Ṽ so as to reproduce the size of the SDW gap. We
find that the fitting works well for the dispersions of the
lower-energy bands but the spectral weight on the f orbital
differs very much from that of the VCA calculations since
the upper and lower Hubbard bands for the f electrons do not
appear in the SDW spectral functions. We then find the value

Ṽ
0.35 from the fitting, indicating that the quasiparticle is
not quite heavy. In other words, with increasing U, the AF
ordering occurs in 2D before the quasiparticle mass is
strongly enhanced.

In Fig. 3�b�, i.e., for U=4, we find that the localized en-
ergy level is not well defined but there is a band repulsion in
the spectra at � f = U /2. The spectral weight of the f elec-
trons becomes large near the Fermi energy for all the mo-
menta. Also, by comparing the results of the noninteracting
case �U=0�, the sharp peak just below the Fermi energy is
observed in the partial DOS of the f orbital �see the right
panel of Fig. 3�b��. Thus, we conclude that this peak not only
arises from the hybridization but is caused by the many-body
resonance, which corresponds to the Kondo resonance peak
in the metallic state.

In Fig. 3�c�, i.e., for U=2, where there is no AF ordering
in the system, we find that the spectra look very similar to
the spectra of noninteracting case. However, we again find
that the localized energy level is not well defined but there is
a weak band repulsion in the spectra at � f = U /2.

〈Mf 〉

〈mc〉

FIG. 2. Calculated results for the staggered magnetic moment of
the f orbitals �Mf� and c orbitals �mc� as a function of U. Dotted
line represents the critical value Ucr=2.7.

ANTIFERROMAGNETISM VERSUS KONDO SCREENING… PHYSICAL REVIEW B 78, 155128 �2008�

155128-3



D. Charge gap and spin gap

To clarify the behavior in the weak-coupling region,
where there is no AF ordering, i.e., U�Ucr, we calculate the
spin and charge gaps defined as �s=E0�N↑+1,N↓−1�
−E0�N↑ ,N↓� and �c= �E0�N↑+1,N↓+1�+E0�N↑−1,N↓−1�
−2E0�N↑ ,N↓�� /2, respectively, where E0�N↑ ,N↓� is the
ground-state energy of a cluster with N↑ up-spin and N↓
down-spin electrons. Because the two-particle Green’s func-
tions cannot be calculated directly from VCA, we here use
an exact-diagonalization technique on small clusters. We use
the eight-site, 16-orbital cluster with periodic boundary con-
dition to calculate the ground-state energies and estimate the
spin and charge gaps. In Fig. 4, we show the ratio of the spin
gap to the charge gap �s /�c, thus, obtained as a function of
U, where the result only at U�Ucr �with Ucr determined in
Sec. III A� is shown because no phase transition occurs in
finite-size systems. We find �c
�s for all values of
U ��Ucr�, indicating the system to be in the regime of the
Kondo insulator;10 i.e., there is no long-range AF ordering,
where localized spins are screened by the formation of the
Kondo singlet state. As U decreases to 0, we find that the two
gaps tend smoothly to the same value, i.e., �s /�c→1, indi-

cating the system tends to the noninteracting band insulator.

IV. SUMMARY

In summary, we have applied the VCA based on the SFT
to consider the symmetric PAM at half filling in 2D. We
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FIG. 3. �Color online� Calculated results for the single-particle spectra �left and middle panels� and DOS �right panels� for �a� U=10, �b�
U=4, and �c� U=2, where �=0 corresponds to the Fermi energy. The left and middle panels show the spectra of the c and f electrons,
respectively. In the right panel, the solid and dotted curves are the DOS for the f and c orbitals, respectively. The artificial Lorentzian
broadening of �=0.05 is included.

∆
∆

FIG. 4. Calculated result for the ratio of the spin gap to charge
gap �s /�c as a function of U �U�Ucr�. The eight-site cluster is
used.
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have, thus, demonstrated the validity of the approach by dis-
cussing in particular the competition between antiferromag-
netism and Kondo screening in the thermodynamic limit at
zero temperature. We have shown that the symmetry-broken
AF ordering of localized spins is realized in the strong cou-
pling region U
Ucr, and the Kondo insulating behavior is
realized in the weak-coupling region U�Ucr. We have de-
termined the critical interaction strength as Ucr=2.7. We
have calculated the staggered magnetic moment as a function
of the interaction strength and have shown that the phase
transition is of the second order. We have also calculated the
single-particle spectra and density of states. We have thereby
discussed the effect of electron correlations on the quasipar-
ticle band structure. We have applied an exact-
diagonalization technique on small clusters to calculate the
ratio of the spin gap to charge gap in the weak-coupling
region and found that the Kondo insulating state continu-
ously tends to the noninteracting band insulator with de-
creasing the value of U to 0.

We thus have shown that the present approach is very
useful for considering the electronic states of PAM in 2D. To
improve the accuracy of our results, one may introduce ad-
ditional variational parameters, such as the hopping terms, to
take into account the quantum fluctuations more efficiently
and suppress the overestimation of the stability of the AF
ordering, which we want to leave for future studies.
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